Monatsh Chem (1987) 118: 91-103

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1987

Beiträge zur Chemie der Pyrrolpigmente, 68. Mitt. [1]: Zum Kationentransport mit tripyrrinoiden Ionophoren

Dieter Eichinger und Heinz Falk*

Institut für Chemie, Johannes-Kepler-Universität Linz, A-4040 Linz, Austria

(Eingegangen 6. Februar 1986. Angenommen 30. April 1986)

On the Chemistry of Pyrrole Pigments, LXVIII: On the Cation Transport by Tripyrrinoid Ionophores

A tripyrrinic carrier has been synthesized and its carrier properties for cations measured using a bulk membrane. A remarkable selectivity was found for Zn^{++} and Cu^{++} ions. The pK_a values and complexation data of a series of tripyrrinic systems are reported. The basicity of the pyrroleninic nitrogen atom and the geometrical constraints of the ligands are the main reasons for the selectivity and the high efficiency of the tripyrrinic ligand to carry Zn^{++} and Cu^{++} ions near the diffusion limit.

(Keywords: Bulk membrane; Cation transport; Ionophores; Selectivity; Tripyrrins)

Einleitung

In einer vorangegangenen Mitteilung [2] konnte erstmals gezeigt Gallenfarbstoffe. insbesondere werden. daß des verdinoiden Strukturtyps, als Ionophore für den selektiven Transport von Übergangsmetallkationen wirken können. Die strukturellen Voraussetzungen für diese Eigenschaft scheinen dabei im Bereich der Pyrromethen- bzw. 5'-Methylenpyrromethenon-Partialstruktur zu liegen, wofür tripyrrinoide Systeme vereinfachte und wirkungsvolle Carrier abgeben könnten.

In der vorliegenden Mitteilung wird versucht, die strukturellen Einflüsse innerhalb eines tripyrrinischen Liganden auf sein Komplexierungsverhalten und damit seine Transporteigenschaften abzugrenzen.

Experimenteller Teil

Für experimentelle Details zur Messung der Ionenflußdichten mit Hilfe einer *Schulman*-Brücke [3] im dreiphasigen System /wäßr. Senderphase mit einer Kationenaktivität von 1.0/Chloroform + Carrier/Leitfähigkeitswasser/ vgl. Lit. [2]; dabei wurden hier neben der konduktometrischen Anzeige des Transportes in der Empfängerphase auch titrimetrische Verfahren zur Analyse der Kationen herangezogen.

Die Schmelzpunkte bestimmte man mit einem *Kofler*-Heiztischmikroskop, die spektroskopischen Daten erhielt man mit Hilfe der Perkin Elmer-330-UV-VIS-, Finnigan-MAT-212-M-, Zeiss-IMR-25-IR- und Varian-FT-80-¹H-NMR-Spektrometer.

Die Verbindung 2 ist in Lit. [4] beschrieben.

Allgemeine Vorschrift zur Kondensation von Arylaldehyden mit Pyrromethenonen

Zur Darstellung von 1 und 3–14 löst man 1 mmol des Aldehyds in 6 ml Trifluoressigsäure und tropft hiezu unter Rühren und Eiskühlung während 0.5 h eine Lösung von 1 mmol (Z)-5-(3,4-Dimethyl-2-pyrrolyl-methylen)-3-methyl-4ethyl-5-oxo-2,5-dihydropyrrol [5] in 6 ml Trifluoressigsäure. Anschließend wird 30 min unter Rückfluß gekocht, die Trifluoressigsäure abdestilliert und der Rückstand in 30 ml CH₂Cl₂ (vor Gebrauch über Al₂O₃-I-60, basisch, perkoliert) gelöst. Diese Lösung bringt man in eine Mischung von 3 ml Triethylamin mit 20 ml CH₂Cl₂ ein, schüttelt zweimal mit 100 ml 2% NH₃-Lösung und mit 100 ml H₂O aus und trocknet über K₂CO₃. Anschließend wird über Al₂O₃-II-60, neutral, mit CH₂Cl₂/Petrolether (50–70 °C) = 1/1 bis 1/0 chromatographiert.

(Z,Z)-4-Ethyl-3-methyl-5-(5-(3,4-dimethyl-1H-pyrrolyl-2-methylen)-3,4dimethyl-5H-pyrrolyl-2-methylen)-3-pyrrolin-2-on [1; C₂₁H₂₅N₃O]

Ausbeute: 51% d. Th.; Schmp.: 171-173 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 7.42 (breites s, NH), 7.02 (s, = HC-5"), 6.78 (s, = HC- β), 5.93 (s, = HC- α), 2.52 (q, J = 7.5 Hz, CH₂CH₃), 2.19 (s, CH₃-3"), 2.15 (s, CH₃-4"), 2.03 (s, CH₃-3" + CH₃-4"), 1.95 (s, CH₃-3), 1.20 (t, J = 7.5 Hz, CH₂CH₃) ppm.

IR (KBr): $v = 1690, 1660, 1625, 1610, 1590 \text{ cm}^{-1}$.

UV-VIS (CHCl₃): $\lambda = 322$ (29 500), 542 (26 000) nm (ε).

MS (70 eV, 150 °C): m/e (%) = 335 (86, M^+), 320 (89), 305 (47), 291 (34), 243 (37), 230 (38), 211 (36), 198 (50), 197 (45), 184 (64), 183 (98), 168 (40), 145 (36), 131 (35), 108 (34), 94 (37), 77 (37), 67 (64), 65 (34), 57 (34), 55 (34), 53 (36), 44 (100), 43 (60), 41 (50). Konformation einer Verbindung ähnlicher Struktur siehe [6].

(Z,Z)-4-Ethyl-3-methyl-5-(5-(phenyl-2-methylen)-3,4-dimethyl-5H-pyrrolyl-2methylen)-3-pyrrolin-2-on [3; C₂₁H₂₁N₂O]

Ausbeute: 19% d. Th.; Schmp.: 157-161 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 10.41 (breites s, NH), 8.08 (m, Phenyl), 7.44 (m, Phenyl), 6.85 (s, =HC- β), 5.86 ßs, =HC- α), 2.52 (q, J = 7.5 Hz, CH₂CH₃), 2.14 (s, CH₃-4'), 2.04 (s, CH₃-3'), 1.95 (s, CH₃-3), 1.19 (t, J = 7.5 Hz, CH₂CH₃) ppm.

NOE: $4 \rightarrow \alpha$ -Methin (30%), $3' \rightarrow \alpha$ -Methin (18%), $4' \rightarrow \beta$ -Methin (18%). IR (KBr): $\nu = 1700, 1610, 1590 \text{ cm}^{-1}$. UV-VIS (CHCl₃): $\lambda = 292$ (20000), 414 (17000) nm (ε). MS (70 eV, 150 °C): m/e (%) = 318 (46, M^+), 303 (56), 289 (23), 288 (22), 181 (18), 149 (24), 139 (28), 126 (20), 122 (20), 111 (30), 109 (22), 105 (38), 97 (47), 96 (20), 95 (36), 85 (42), 83 (45), 81 (40), 77 (33), 71 (61), 69 (57), 67 (44), 57 (100), 55 (65).

(Z,Z)-4-Ethyl-3-methyl-5-(5-(4-N,N-dimethylamino-phenyl-2-methylen)-3,4dimethyl-5H-pyrrolyl-2-methylen)-3-pyrrolin-2-on [4; C₂₃H₂₇N₃O]

Ausbeute: 98% d. Th.; Schmp.: 234-236 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 10.6 (breites s, NH), 7.43 (Schwerpunkt des aromat. AA'BB'-Systems), 6.83 (s, =HC- β), 5.91 (s, =HC- α), 3.08 [s, N(CH₃)₂], 2.52 (q, J = 7.6 Hz, CH₂CH₃), 2.14 (s, CH₃-4'), 2.03 (s, CH₃-3'), 1.95 (s, CH₃-3), 1.19 (t, J = 7.6 Hz, CH₂CH₃) ppm.

NOE: $4 \rightarrow \alpha$ -Methin (22%), $3' \rightarrow \alpha$ -Methin (18%), $4' \rightarrow \beta$ -Methin (19%). IR (KBr): $v = 1.690, 1.580, 1.570, 1.525, 810 \text{ cm}^{-1}$.

UV-VIS (CHCl₃): $\lambda = 341$ (26 400), 545 (25 100) nm (ε).

MS (70 eV, 150 °C): m/e (%) = 361 (78, M^+), 346 (100), 331 (35), 317 (12), 302 (9), 288 (8), 225 (20), 181 (10), 166 (9), 152 (12), 103 (8), 96 (37), 82 (46), 81 (28), 70 (61), 69 (78), 57 (78), 55 (78).

(Z,Z)-4-Ethyl-3-methyl-5-(5-(4-aminophenyl-2-methylen)-3,4-dimethyl-5Hpyrrolyl-2-methylen)-3-pyrrolin-2-on [5; C₂₁H₂₃N₃O]

Die Substanz ist in apolaren organischen Lösungsmitteln schlecht löslich; ein Teil davon wurde über Al_2O_3 II—III (60) mit CHCl₃ chromatographiert.

Ausbeute: 27% d. Th.; Schmp.: 145-146 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 10.6 (breites s, NH), 7.37 (Schwerpunkt des aromat. AA'BB'-Systems), 6.80 (s, =HC- β), 5.89 (s, =HC- α), 4.00 (breites s, NH₂), 2.52 (q, J = 7.5 Hz, CH₂CH₃), 2.13 (s, CH₃-4'), 2.04 (s, CH₃-3'), 1.95 (s, CH₃-3), 1.20 (t, J = 7.5 Hz, CH₂CH₃) ppm.

IR (KBr): $v = 1\,660, \, 1\,630, \, \overline{1}\,610, \, \overline{1}\,590, \, 1\,510 \,\mathrm{cm}^{-1}$.

UV-VIS (CHCl₃): $\lambda = 319$ (27 100), 493 (18 700) nm (ε).

MS (eV, 150 °C): m/e (%) = 333 (31, M^+), 318 (48), 303 (22), 240 (24), 210 (56), 209 (48), 149 (32), 120 (59), 107 (100), 106 (100), 97 (60), 85 (66), 83 (66), 79 (78), 77 (90), 71 (94), 69 (82), 57 (100), 55 (84).

(Z,Z)-4-Ethyl-3-methyl-5-(5-(4-hydroxyphenyl-2-methylen)-3,4-dimethyl-5Hpyrrolyl-2-methylen)-3-pyrrolin-2-on [**6**; C₂₁H₂₂N₂O₂]

Ausbeute: 25% d. Th.; Schmp.: 244-245°C.

¹H-NMR (CDCl₃, δ , 80 MHz): 7.51 (Schwerpunkt des aromat. AA'BB'-Systems), 6.84 (s, =HC- β), 5.91 (s, =HC- α), 2.52 (q, J = 7.6 Hz, CH₂CH₃), 2.15 (s, CH₃-4'), 2.06 (s, CH₃-3'), 1.97 (s, CH₃-3), 1.21 (t, J = 7.6 Hz, CH₂CH₃) ppm. IR (KBr): ν = 1665, 1600, 1570, 1505, 1165 cm⁻⁻¹.

UV-VIS (CHCl₃): $\lambda = 265$ (10 400), 305 (19 600), 421 (13 100), 452 (17 100), 478 (14 900) nm (ε).

MS (70 eV, 150 °C): m/e (%) = 334 (31, M^+), 319 (67), 305 (25), 304 (27), 197 (12), 149 (13), 139 (14), 137 (10), 125 (14), 123 (15), 122 (24), 121 (39), 119 (11), 111 (21), 110 (10), 109 (22), 107 (11), 104 (12), 97 (37), 96 (14), 95 (36), 93 (26), 85 (30), 83 (42), 71 (56), 69 (61), 67 (46), 65 (23), 57 (100), 55 (89), 53 (21).

(Z,Z)-4-Ethyl-3-methyl-5-(5-(4-methoxyphenyl-2-methylen)-3,4-dimethyl-5Hpyrrolyl-2-methylen)-3-pyrrolin-2-on [7; C₂₂H₂₄N₂O₂]

Ausbeute: 30% d. Th.; Schmp.: 153-156 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 10.6 (breites s, NH), 7.57 (Schwerpunkt des aromat. AA'BB'-Systems), 6.85 (s, =HC- β), 5.90 (s, =HC- α), 3.89 (s, CH₃O-Phenyl), 2.54 (q, J = 7.6 Hz, CH₂CH₃), 2.14 (s, CH₃-4'), 2.04 (s, CH₃-3'), 1.96 (s, CH₃-3), 1.21 (t, J = 7.5 Hz, CH₂CH₃) ppm.

IR (KBr): $v = 1690, 1590, 1250 \text{ cm}^{-1}$.

UV-VIS (CHCl₃): $\lambda = 309$ (29 400), 350 (18 200), 370 (13 700), 430 (15 000), 455 (19 000), 482 (14 700) nm (ε).

MS (70 eV, 150 °C): m/e (%) = 348 (88, M^+), 333 (100), 319 (37), 318 (38), 242 (23), 212 (21), 139 (20), 137 (26), 135 (37), 125 (20), 123 (17), 111 (31), 109 (24), 99 (18), 97 (42), 95 (29), 85 (36), 83 (36), 81 (28), 71 (45), 69 (39), 67 (22), 57 (58), 55 (37).

Konfiguration und Konformation einer analogen Verbindung [4].

(Z,Z)-4-Ethyl-3-methyl-5-(5-(4-methylphenyl-2-methylen)-3,4-dimethyl-5Hpyrrolyl-2-methylen)-3-pyrrolin-on [8; C₂₂H₂₄N₂O]

Ausbeute: 30% d. Th.; Schmp.: 187-189 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 10.6 (breites s, NH), 7.65 (Schwerpunkt des aromat. AA'BB'-Systems), 6.84 (s, =HC- β), 5.87 (s, -HC= α), 2.52 (q, J = 7.5 Hz, CH₂CH₃), 2.40 (s, CH₃-Phenyl), 2.14 (s, CH₃-4'), 2.05 (s, CH₃-3'), 1.95 (s, CH₃-3), 1.20 (t, J = 7.5 Hz, CH₂CH₃) ppm.

IR (KBr): $v = 1690, 1630, 1590 \text{ cm}^{-1}$.

UV-VIS (CHCl₃): $\lambda = 293$ (21 100), 441 (16 200) nm (ε).

MS (70 eV, 150 °C): m/e (%) = 332 (95, M^+), 317 (100), 302 (54), 229 (25), 215 (17), 196 (36), 195 (43), 149 (66), 129 (16), 120 (44), 119 (59), 116 (15), 113 (15), 111 (23), 99 (23), 97 (24), 91 (70), 85 (38), 83 (100), 73 (19), 70 (18), 69 (92), 67 (16), 65 (30), 57 (23).

Konfiguration und Konformation einer analogen Verbindung [4].

(Z,Z)-4-Ethyl-3-methyl-5-(5-(4-chlorphenyl-2-methylen)-3,4-dimethyl-5Hpyrrolyl-2-methylen-3-pyrrolin-2-on [9; C₂₁H₂₁N₂OCl]

Ausbeute: 66% d. Th.; Schmp.: 161-162 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 10.4 (breites s, NH), 7.73 (Schwerpunkt des aromat. AA'BB'-Systems), 6.77 (s, =HC- β), 5.86 (s, =HC- α), 2.52 (q, J = 7.6 Hz, CH₂CH₃), 2.14 (s, CH₃-4'), 2.04 (s, CH₃-3'), 1.96 (s, CH₃-3), 1.20 (t, J = 7.6 Hz, CH₂CH₃) ppm.

NOE: $4 \rightarrow \alpha$ -Methin (15%), α -Methin $\rightarrow 4$ (2%) und 3' (2%), $4' \rightarrow \beta$ -Methin (20%), β -Methin $\rightarrow 4'$ (1%).

IR (KBr): v = 1700, 1610, 1600, 1590, 1080 cm⁻¹.

UV-VIS (CHCl₃): $\lambda = 295$ (25900), 427 (19000) nm (ε).

MS (70 eV, 150 °C): m/e (%) = 352 (84, M^+), 339 (60), 338 (39), 337 (100), 323 (64), 322 (66), 216 (27), 215 (44), 141 (40), 140 (70), 139 (100), 129 (21), 111 (56), 97 (32), 95 (26), 83 (38), 81 (35), 71 (45), 69 (63), 67 (40), 57 (85), 55 (64).

(Z,Z)-4-*Ethyl*-3-methyl-5-(5-(4-acetoxyphenyl-2-methylen)-3,4-dimethyl-5H-pyrrolyl-2-methylen)-3-pyrrolin-2-on [**10**; C₂₃H₂₄N₂O₃]

Ausbeute: 25% d. Th.; Schmp.: 174-178 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 10.6 (breites s, NH), 7.65 (Schwerpunkt des aromat. AA'BB'-Systems), 6.79 (s, =HC- β), 5.84 (s, =HC- α), 2.50 (q, J = 7.5 Hz,

CH₂CH₃), 2.28 (s, CH₃CO), 2.09 (s, CH₃-4'), 1.98 (s, CH₃-3'), 1.94 (s, CH₃-3), 1.18 (t, J = 7.5 Hz, CH₂CH₃) ppm. IR (KBr): $\gamma = 1760, 1700, 1640, 1620, 1600, 1200 \text{ cm}^{-1}$. UV-VIS (CHCl₃): $\lambda = 293$ (23 200), 430 (15 800) nm (ε). MS (70 eV, 150 °C): m/e (%) = 376 (41, M^+), 361 (19), 334 (17), 319 (68), 305 (22), 229 (22), 215 (16), 164 (26), 150 (26), 149 (19), 122 (23), 121 (37), 111 (26), 97 (41), 95 (36), 85 (36), 83 (46), 81 (41), 71 (58), 69 (62), 68 (44), 57 (100), 55 (78).

(Z,Z)-4-Ethyl-3-methyl-5-(5-(4-cyanophenyl-2-methylen)-3,4-dimethyl-5Hpyrrolyl-2-methylen)-3-pyrrolin-2-on [11; C₂₂H₂₁N₃O]

Ausbeute: 77% d. Th.; Schmp.: 208-210 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 10.4 (breites s, NH), 7.93 (Schwerpunkt des aromat. AA'BB'-Systems), 6.75 (s, =HC- β), 5.86 (s, =HC- α), 2.53 (q, J = 7.5 Hz, CH₂CH₃), 2.14 (s, CH₃-4'), 2.05 (s, CH₃-3'), 1.96 (s, CH₃-3), 1.21 (t, J = 7.5 Hz, CH₂CH₃) ppm.

IR (KBr): $v = 2220, 1710, 1630, 1620, 1600, 1590 \text{ cm}^{-1}$.

UV-VIS (CHCl₃): $\lambda = 294$ (23 000), 433 (10 800) nm (ε).

MS (70 eV, 150 °C): m/e (%) = 343 (49, M^+), 328 (100), 314 (30), 313 (35), 207 (10), 206 (23), 150 (10), 126 (11), 111 (20), 97 (33), 86 (36), 84 (50), 82 (27), 71 (46), 69 (48), 57 (83), 55 (58).

 $\label{eq:constraint} \begin{array}{l} (Z,Z)-4-Ethyl-3-methyl-5-(5-(4-nitrophenyl-2-methylen)-3,4-dimethyl-5H-pyrrolyl-2-methylen)-3-pyrrolin-2-on \ \ \left[\mathbf{12};\ \mathbf{C}_{21}\mathbf{H}_{21}\mathbf{N}_{3}\mathbf{O}_{3}\right] \end{array}$

Ausbeute: 75% d. Th.; Schmp.: 210-213 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 10.3 (breites s, NH), 8.24 (Schwerpunkt des aromat. AA'BB'-Systems), 6.80 (s, =HC- β), 5.87 (s, =HC- α), 2.53 (q, J = 8.0 Hz, CH₂CH₃), 2.17 (s, CH₃-4'), 2.07 (s, CH₃-3'), 1.97 (s, CH₃-3), 1.21 (t, J = 8.0 Hz, CH₂CH₃) ppm.

IR (KBr): $v = 1710, 1620, 1600, 1510, 1330 \text{ cm}^{-1}$.

UV-VIS (CHCl₃): $\lambda = 293$ (27 800), 441 (22 300) nm (ε).

MS (70 eV, 150 °C): m/e (%) = 363 (83, M^+), 349 (60), 348 (100), 346 (72), 334 (65), 333 (79), 318 (24), 316 (30), 303 (21), 302 (40), 301 (18), 288 (31), 287 (30), 273 (18), 259 (14), 205 (13), 180 (10), 152 (9), 128 (8), 115 (8), 67 (10), 57 (10).

(Z,Z)-4-Ethyl-3-methyl-5-(5-(furyl-2-methylen)-3,4-dimethyl-5H-pyrrolyl-2methylen)-3-pyrrolin-2-on [13; C₁₉H₂₀N₂O₂]

Ausbeute: 88% d. Th.; Schmp.: Zersetzung bei 180 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 7.67 (d, $J_{AX} = 2.5$ Hz), 7.23 (d, $J_{MX} = 3.5$ Hz), 6.70 (s, =HC- β), 6.65 (m, X-Teil des AMX-Systems), 5.88 (s, =HC- α), 2.52 (q, J = 7.6 Hz, CH₂CH₃), 2.12 (s, CH₃-4'), 2.06 (s, CH₃-3'), 1.96 (s, CH₃-3), 1.20 (t, J = 7.6 Hz, CH₂CH₃) ppm.

NOE: $4 \rightarrow \alpha$ -Methin (25%), $3' \rightarrow \alpha$ -Methin (18%), $4' \rightarrow \beta$ -Methin (26%). IR (KBr): $v = 1710, 1630, 1610, 1600, 1470 \text{ cm}^{-1}$.

UV-VIS (CHCl₃): $\lambda = 306 (29\,000), 440 (18\,700), 464 (23\,100), 493 (15\,700) \text{ nm}$ (ε).

MS (70 eV, 150 °C): m/e (%) = 308 (76, M^+), 293 (100), 279 (76), 278 (76), 235 (14), 183 (28), 154 (16), 125 (17), 111 (25), 97 (35), 95 (25), 85 (26), 83 (26), 81 (28), 71 (42), 69 (43), 67 (24), 57 (59), 55 (44).

(Z,Z)-4-Ethyl-3-methyl-5-(5-(thienyl-2-methylen)-3,4-dimethyl-5H-pyrrolyl-2methylen)-3-pyrrolin-2-on [14; C₁₉H₂₀N₂OS]

Ausbeute: 65% d. Th.; Schmp.: 214-215 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 10.65 (breites s, NH), 7.69 (d, $J_{AX} = 5.9$ Hz), 7.32 (d, $J_{MX} = 6.3$ Hz), 7.08 (s, = HC- β), 7.07 (m, X-Teil des AMX-Systems), 5.86 (s, = HC- α), 2.51 (q, J = 7.6 Hz, CH₂CH₃), 2.11 (s, CH₃-4'), 2.02 (s, CH₃-3'), 1.95 (s, CH₃-3), 1.19 (t, J = 7.6 Hz, CH₂CH₃) ppm.

NOE: $4 \rightarrow \alpha$ -Methin (8%), $3' \rightarrow \alpha$ -Methin (26%), $4' \rightarrow \beta$ -Methin (10%). IR (KBr): $\nu = 1705, 1630, 1610, 1600 \text{ cm}^{-1}$.

UV-VIS (CHCl₃): $\lambda = 306 (34\,600), 439 (14\,000), 466 (23\,000), 492 (15\,200)$ nm (ε).

MS (70 eV, 150 °C): m/e (%) = 324 (82, M^+), 309 (100), 295 (40), 294 (46), 183 (18), 125 (10), 111 (16), 109 (12), 97 (23), 95 (19), 95 (23), 83 (36), 81 (20), 71 (24), 69 (30), 67 (14), 57 (39), 55 (30).

(Z,Z)-3,3-Dimethyl-5-(5-(4-N,N-dimethylaminophenyl-2-methylen)-3,4dimethyl-5H-pyrrolyl-2-methylen)-pyrrolidin-2,4-dion [15; C₂₂H₂₅N₃O₂]

166 mg (0.5 mmol) 3,3-Dimethyl-5-(3,4-dimethyl-5*H*-pyrrolyl-2-methylen)pyrrolidin-2,4-dion [7] werden in 5 ml Trifluoressigsäure 10 min unter Argonschutz gerührt. Nach Zugabe von 75 mg (0.5 mmol) 4-N,N-Dimethylaminobenzaldehyd wird weitere 30 min gerührt. Die Aufarbeitung und Chromatographie erfolgt wie oben angegeben.

Ausbeute: 75% d. Th.; Schmp.: 185–190 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 7.47 (Schwerpunkt des aromat. AA'BB'-Systems), 6.91 (s, =HC- β), 6.35 (s, =HC- α), 3.10 [s, N(CH₃)₂], 2.16 (s, CH₃-4'), 2.05 (s, CH₃-3'), 1.33 (s, 2 CH₃-2) ppm.

IR (KBr): $v = 1740, 1715, 1580, 1570, 1290 \text{ cm}^{-1}$.

UV-VIS (CHCl₃): $\lambda = 340$ (15000), 352 (16000), 557 (21000) nm (ε).

MS (70 eV, 150 °C): m/e (%) = 363 (100, M^+), 348 (86), 335 (62), 320 (45), 292 (44), 266 (57), 265 (88), 251 (40), 250 (40), 249 (40), 240 (61), 227 (38), 206 (36), 147 (35), 133 (40), 124 (30), 123 (30), 99 (25), 82 (28), 65 (26), 57 (27).

racem. (Z)-3,3-Dimethyl-5-(3,4-dimethyl-pyrrol-2-yl-methylen)-4-hydroxy-pyrrolidin-2-on $[C_{13}H_{18}N_2O_2]$

232 mg (1 mmol) 3,3-Dimethyl-5-(3,4-dimethyl-5*H*-pyrrolyl-2-methylen)pyrrolidin-2,4-dion [7] werden in 4 ml CH₃OH gelöst, portionsweise 60 mg (1.58 mmol) NaBH₄ zugegeben und 15 min bei Raumtemperatur gerührt. Eingießen in 30 ml H₂O und 10 ml CHCl₃, Ansäuern mit Essigsäure, dreimal Extrahieren mit je 10 ml CHCl₃. Waschen mit H₂O, Trocknen über Na₂SO₄, Abrotieren und Chromatographie an SiO₂ (CHCl₃/CH₃OH = 50/1) gibt 164 mg (70% d. Th.); Schmp.: 107–110 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 9.54 (breites s, NH), 8.94 (breites s, NH), 6.56 (d, J = 1.1 Hz = HC-5), 5.76 (d, J = 1.1 Hz, =HC- α), 4.46 (d, J = 1.1 Hz, CH-4), 2.01 (s, CH₃-3' bzw. 4'), 1.24 (s, CH₃-2), 1.18 (s, CH₃-2).

IR (KBr): $v = 3400, 1700, 1670 \,\mathrm{cm}^{-1}$.

U-VIS (CHCl₃): $\lambda = 295$ (10 100) nm (ϵ).

MS (70 eV, 150° C): m/e (%) = 234 ((5, M^+), 216 (2), 97 (12), 95 (12), 87 (11), 83 (78), 72 (26), 71 (49), 69 (15), 57 (29), 55 (19).

racem. (Z,Z)-3,3-Dimethyl-5-(5-(4-N,N-dimethylaminophenyl-2-methylen)-3,4dimethyl-5H-pyrrolyl-2-methylen)-4-hydroxy-pyrrolidin-2-on [16; C₂₂H₂₇N₃O₂]

Man löst 47 mg (0.2 mmol) des voranstehenden Hydroxy-pyrrolidinons und 30 mg (0.2 mmol) 4-N,N-Dimethylaminobenzaldehyd in 2 ml CHCl₃, gibt 3 Tropfen POCl₃ zu und rührt ca. 30 min bis die Lösung gelbgrün wird. Nach Zugabe von 50 ml CHCl₃ schüttelt man dreimal mit einer gesättigten wäßrigen NaHCO₃-Lösung und einmal mit H₂O aus, trocknet über K₂CO₃ und destilliert das Lösungsmittel ab. Chromatographie an Al₂O₃ (CH₂Cl₂/*Me*OH = 100/1 bis 50/1), gibt 42 mg (58% d. Th.); Schmp.: 167–170 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 7.34 (Schwerpunkt des aromat. AA'BB'-Systems), 6.65 (s, =H- β), 5.74 (d, J = 1.1 Hz, =HC- α), 4.63 (d, J = 1.1 Hz, CH-4), 3.06 [(s, N(CH₃)₂], 2.14 (s, CH₃-4), 2.01 (s, CH₃-3'), 1.30 (s, CH₃-2), 1.20 (s, CH₃-2) ppm.

IR (KBr): $v = 1720, 1590, 1520 \text{ cm}^{-1}$.

UV-VIS (CHCl₃): $\lambda = 265$ (12 700), 300 (10 000), 485 (10 000) nm (ε).

MS (70 eV, 150 °C): m/e (%) = 365 (37, M^+), 364 (19), 363 (30), 349 (11), 348 (12), 335 (11), 334 (21), 265 (19), 150 (12), 149 (25), 148 (23), 134 (32), 125 (11), 123 (11), 122 (12), 121 (100), 120 (19), 111 (19), 109 (15), 98 (16), 97 (31), 95 (27), 85 (31), 83 (41), 81 (24), 71 (53), 70 (38), 69 (53), 67 (23), 57 (95), 56 (20), 55 (72).

Die pK_a -Werte bestimmte man in bereits beschriebener Weise [8] durch spektrophotometrische Titration (Dimethylsulfoxid/Wasser = 80/20, ν/ν). Die Ermittlung von Komplexstöchiometrie und Komplexbildungskonstanten erfolgte spektrophotometrisch [9] (CH₃OH/Zn(CH₃COO)₂ bzw. NiCl₂).

Ergebnisse und Diskussion

Die ausgeprägten Carriereigenschaften von Aetiobiliverdin-IV- γ (I) für den Transport von Protonen und Übergangsmetallkationen, wie Cr⁺⁺⁺, Fe⁺⁺, Cu⁺⁺ und Zn⁺⁺ lassen sich im wesentlichen auf die Chelatbildnereigenschaften zweier Partialstrukturelemente zurückführen,

Abb. 1. Transportflußdichten $J \pmod{m^{-2} \cdot s^{-1}}$ und Ionenradien r (Å) für den Kationentransport mit dem Carrier 1

nämlich das 3,3',5,5'-Tetramethyl-2,2'-dipyrromethen (II) und das Nalkylierte Tripyrrin **2** [2]. Die einfachste Vereinigung dieser Partialstrukturen zu einem "Idealcarrier" liegt somit in einem freien Tripyrrin vor, für das wir **1** als Modellverbindung verwenden.

Mißt man für eine Serie von Kationen die Transportflußdichten unter Verwendung von 1 als Carrier, so ergibt sich das Bild der Abb. 1, in dem die Ionenradien der Kationen [10] gegen die Transportflußdichten aufgetragen werden. Man erkennt unmittelbar zwei Gruppen von Kationen: In der einen Gruppe ist eine starke Abhängigkeit des Transportphänomens vom Ionenradius zu beobachten — ein Optimum wird bei etwa 0.7 Å gefunden — die andere Gruppe zeigt kaum einen Einfluß, wobei die Absolutwerte um fast zwei Größenordnungen unter den Maximalwerten der ersten Gruppe liegen. Einen Hinweis auf diese Dichotomie erhält man aus der Untersuchung des Verhaltens von 1 gegenüber Zn⁺⁺ und Ni⁺⁺ bei der Komplexbildung: Wie die *Job*-Auftragung [9] in Abb. 2 nachweist, wird Zn⁺⁺ mit großer Effizienz (log K = 12.2) in Form eines 2: 1-Komplexes cheliert, wogegen Ni⁺⁺ nur einen relativ losen (log K = 4.1) 1: 1-Komplex zu bilden vermag.

Abb. 2. Job-Auftragung für die Komplexbildung von 1 mit ZnCl₂ (------) und NiCl₂ (------) sowie die UV-VIS-Spektren von 1 (-------) und dessen Zn⁺⁺-Komplex (-------) in Methanol

Der Grund für dieses unterschiedliche Verhalten liegt einerseits in den verschiedenen Geometrien des maximal stabilisierten Ligandenfeldes für die beiden Kationen, andererseits in den räumlichen Erfordernissen, die der Ligand bei der Komplexbildung vorgibt. Wie Abb. 3 zeigt, ist die tetragonale Koordination, wie sie bei Zn^{++} -Komplexen vorherrscht [11], ohne Probleme möglich. Zudem liegt der Ionenradius von Zn^{++} in einem idealen Bereich für diese Koordination — aus Abb. 3 wird ja auch die ausgeprägte Abhängigkeit der Transportrate vom Ionenradius (Abb. 1!) unmittelbar verständlich. Daß in Tripyrrinen die Komplexierung am Pyrromethenpartialstrukturelement eintritt, wird durch die Struktur von BF_2 -Chelaten [12] belegt. In diesen ist das Laktamfragment aus der Ebene gedreht, was dann die tetragonale Koordination ermöglicht. Ebenso ist das UV-VIS-Spektrum (Abb. 2) charakteristisch für diese Art der Komplexierung [12].

Abb. 3. Modell der tetragonalen Koordination eines Kations (M) mit Tripyrrinen

Die für Ni⁺⁺ bevorzugte Koordination ist hingegen quadratisch [13]; eine Komplexierung ist in diesem Fall nur durch starke Verzerrung der Geometrie des Ligandenfeldes und durch gemischte Koordination von einem Äquivalent 1 und zwei Äquivalenten des mitgeführten Anions (Cl⁻⁻) möglich.

Daß die Transporteffizienz des Tripyrrins wesentlich über jenen der Partialstrukturen liegt, dürfte zwei Gründe haben: 1. Hinsichtlich der Pyrromethenstruktur besteht der Unterschied darin. daß die Komplexzerlegung, die ja für das Transportphänomen ebenso wichtig ist, sowohl kinetisch als auch durch die enorm hohe Komplexbildungskonstante retardiert ist. So wird z. B. der Zn-Komplex von II durch den Kontakt mit einem wäßrigen System nicht mehr zerlegt; bei einer Abschätzung der Komplexbildungskonstante erhält man lediglich den Hinweis dafür, daß log K größer als 20 ist. (Die früher mitgeteilte [2] hohe Transport-Effizienz von II ist auf die nicht berücksichtigte Konkurrenztransportrate von Protonen zurückzuführen.) Durch den Laktamring im Tripyrrin wird durch dessen Raumbedarf die Komplexbildungstendenz des Methenteiles etwas zurückgedrängt. 2. Andererseits wird auf Grund der elektronischen Eigenschaften des Laktamfragmentes die Basizität des Pyrroleninfragmentes reduziert. Dies sichert ebenfalls die benötigte leichtere Zerlegbarkeit der Transportspezies an der Grenzfläche.

Abb. 4. Korrelation des *Hammett*'schen σ_{para} -Wertes (σ) des 4-ständigen Restes im Phenylfragment mit dem pK_a von **3**—**12** sowie Korrelation der pK_a -Werte von **3**—**12** mit deren Transportflußdichten $J \pmod{m^{-2} \cdot s^{-1}}$ für Zn⁺⁺

Um den Einfluß der Basizität des Pyrroleninfragmentes zu beleuchten, bieten sich die Modellsysteme **3**—**12** an: Wie Abb. 4 zeigt, korrelieren die *Hammett*'schen σ_{para} -Werte [14] der Reste am Aromaten ($\sigma = 5.3 - pK_a$) mit einer Steigung von 1.0 für die Ausgleichsgerade. Die Korrelationsgerade der Transportflußdichte mit dem pK_a -Wert zeigt hingegen eine weitaus geringere Neigung ($\log J = -9.6 + 0.6 pK_a$). Dies weist darauf hin, daß es einen optimalen pK_a -Wert für den Transport gibt, der besser mit einer parabolischen Korrelation zu beschreiben wäre dafür ist jedoch das Datenmaterial zu begrenzt: **4** ist in dieser Serie die am stärksten basische Verbindung, die dementsprechend den äußerst möglichen Punkt in derselben darstellt.

Es sei hier jedoch ausdrücklich darauf verwiesen, daß die Art der Korrelation von J mit pK_a in Abb. 4 nur innerhalb einer strukturell eng

verwandten Gruppe von Verbindungen gilt. Für den Vergleich von Verbindungen unterschiedlichen Strukturtyps ist der scheinbare pK_a -Wert in einem Zweiphasensystem [1] eine bessere Vergleichsmöglichkeit, da dieser auch die Aktivitäten des konjugierten Säure-Basen-Paares in der apolaren Phase mit einschließt. So werden für 1 und 12 in wäßriger Dimethylsulfoxid-Lösung pK_a -Werte von 4.6 und 4.5 gemessen, womit die Transportflußdichten für diese Verbindungen (3 300 \cdot 10⁻⁹ und 80 \cdot 10⁻⁹) nicht korrelieren. Im Zweiphasensystem wäßriger Puffer/Chloroform beobachtet man hingegen scheinbare pK_a -Werte von 0.3 und — 1.8, was mit den Transporteigenschaften in augenscheinlicher Beziehung steht. Die pK_a -Werte der Furyl- und Thienylanaloge von 3, 13 und 14 (5.1 und 4.8) fügen sich zusammen mit den entsprechenden Transportflußdichten ($J = 160 \cdot 10^{-9}$ und $10 \cdot 10^{-9}$) in obiges Bild ein.

Für die Effektivität des Transportes selbst dürfte jedoch bei 1, wie man aus dem Vergleich der Transportflußdichten von 1, 2, 13 und 14 ablesen kann, ein Komplexierungstyp verantwortlich sein, bei dem die Koordination mit dem pyrroleninischen Stickstoff auch von einer Koordination mit den anderen beiden Stickstoff-Zentren begleitet ist [15]. Die Beteiligung des pyrrolischen Dipyrromethen-Stickstoffs wird aus den obigen Experimenten wahrscheinlich — daß aber auch die Eigenschaften des Laktamfragmentes einen Einfluß auf die Transporteigenschaften des Carriers ausüben, zeigt der Vergleich von 4 $(J_{Zn} = 970.10^{-9})$ mit 15 und 16 $(J_{Zn} = 210.10^{-9})$ und $100 \cdot 10^{-9}$).

Die Natur von 1 entspricht in Hinblick auf seine Eigenschaften als Carrier einem optimalen System für das in günstigen Fällen, wie Cu⁺⁺ oder Zn⁺⁺ die Transportflußdichten Werte erreichen, die dem Bereich diffusionsgesteuerter Transportprozesse [16] entsprechen.

Dank

Die Arbeiten der vorliegenden Mitteilung wurden durch den Fonds zur Förderung der wissenschaftlichen Forschung (Projekt Nr. P 5570) gefördert.

Literatur

- [1] 67. Mitt.: Falk H, Hinterberger A (1986) Monatsh Chem 117: 1081
- [2] Eichinger D, Falk H (1982) Monatsh Chem 113: 355
- [3] Rosano H, Schulman JH, Weisbuch JB (1961) Ann NY Acad Sci 92: 457
- [4] Falk H, Grubmayr K (1977) Monatsh Chem 108: 625
- 5] Falk H, Leodolter A, Schade G (1978) Monatsh Chem 109: 183
- [6] Falk H, Gergely S, Grubmayr K, Hofer O (1977) Z Naturforsch 32b: 299
- [7] Atkinson JH, Johnson AW, Raudenbusch W (1966) J Chem Soc (C) 1966: 1155
- [8] Falk H, Gergely S, Grubmayr K, Hofer O (1977) Ann Chem 1977: 565
- [9] S.d. Übersicht: Schäfer H (1961) Komplexbildung in Lösung. Springer, Berlin Göttingen Heidelberg
- [10] D'Ans-Lax (1967) Taschenbuch für Chemiker und Physiker, 3 Aufl. Springer, Berlin Heidelberg New York
- [11] S. dazu die Geometrie von Pyrromethenchelaten aus röntgenstrukturanalytischen Untersuchungen: Elder M, Penfold BR (1969) J Chem Soc 1969 A: 2556; Cotton FA, Deboer BG, Pipal JR (1970) Inorg Chem 9: 783; March FC, Couch DA, Emerson K, Fergusson JE, Robinson WT (1971) J Chem Soc 1971 A: 440
- [12] Falk H, Grubmayr K, Neufingerl F (1979) Monatsh Chem 110: 1127
- [13] Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon Press, Oxford, p 1343
- [14] Hammett LP (1973) Physikalische Organische Chemie. Verlag Chemie, Weinheim, p 352
- [15] Vgl. hiezu die Daten und die Diskussion f
 ür den Zn⁺⁺-Transport durch I in Lit [2]
- [16] Behr JP, Kirch M, Lehn JM (1985) J Amer Chem Soc 107: 241